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Transport of lysosomes decreases in the
perinuclear region: Insights from changepoint
analysis
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1Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina and 2Department of
Mathematics, Tulane University, New Orleans, Louisiana
ABSTRACT Lysosomes are membrane-bound organelles that serve as the endpoint for endocytosis, phagocytosis, and auto-
phagy, degrading the molecules, pathogens, and organelles localized within them. These cellular functions require intracellular
transport. We use fluorescence microscopy to characterize the motion of lysosomes as a function of intracellular region, peri-
nuclear or periphery, and lysosome diameter. Single-particle tracking data are complemented by changepoint identification
and analysis of a mathematical model for state switching. We first classify lysosomal motion as motile or stationary. We then
study how lysosome location and diameter affects the proportion of time spent in each state and quantify the speed during motile
periods. We find that the proportion of time spent stationary is strongly region dependent, with significantly decreased motility in
the perinuclear region. Increased lysosome diameter only slightly decreases speed. Overall, these results demonstrate the
importance of decomposing particle trajectories into qualitatively different behaviors before conducting population-wide statis-
tical analysis. Our results suggest that intracellular region is an important factor to consider in studies of intracellular transport.
SIGNIFICANCE Intracellular transport is an essential cellular function. Characterizing and understanding this motion is
challenging because of the complex environment of the cell, heterogeneity of transport organelles, and limits inherent to
any experimental method. We implement an automated changepoint analysis and, on the basis of the segmented paths,
conduct a rigorous statistical and mathematical analysis of lysosomal motion. We quantify the relative impact of
intracellular region and lysosome diameter on lysosomal motion. Both factors can be altered as a function of disease. The
methods presented here provide a comprehensive template for coupling complex biological data with mathematical
analysis. This approach reveals that the intracellular region, perinuclear or periphery, is an important factor in the
intracellular motion of lysosomes and possibly other organelles and molecules undergoing transport.
INTRODUCTION

Lysosomes are membrane-bound organelles responsible for
processing endocytic molecules, particles, and viruses;
phagocytic destruction of pathogens; and the cellular house-
keeping of autophagy (1–4). They are distributed throughout
the cell, with clustering in the perinuclear region (5,6). As
essential intracellular transport vesicles, there has been
much work (7–10), including our own (11), examining the
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relationship between lysosome function, transport, and
diameter. In addition to the fundamental knowledge gained
by understanding the biophysics of intracellular transport,
there are also implications for human health. Lysosome
diameter can be increased by disease or exposure to nanopar-
ticles (2,12–14). For example, cystinosis, a lysosomal stor-
age disorder that leads to kidney and eye damage, is
associated with enlarged lysosomes (12).

Lysosomal motion is a combination of adenosine triphos-
phate (ATP)-dependent transport along microtubules and
non-ATP-dependent motion, typically attributed to either
free or constrained diffusion within the cytosol
(3,4,11,15,16). Transport along microtubules is required
for efficient processing of endocytic cargo, including deliv-
ery of endocytic cargo from late endosomes (15,17–19).
Diffusive motion lacks the length scale necessary to
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transport lysosomes across a cell on a relevant timescale.
Our previous research examined the effect of lysosome
diameter on intracellular transport using fluorescence mi-
croscopy and single-particle tracking to characterize the
motion of individual lysosomes and mean-squared displace-
ment (MSD)-based analysis (11). This research showed that
the slope of the ensemble MSD curve was significantly
decreased for larger lysosomes. The speed of unidirectional
transport was not affected by increased lysosome diameter.

In comparison with our previous study (11), the work
described here is based on trajectories recorded with a faster
frame rate (20 vs. 3.3 Hz). As a result, distinct states are more
apparent, and we can develop a comprehensive mathematical
analysis of lysosome transport using achangepoint detection al-
gorithm (Fig. 1). The changes in state can be seen more readily
when the evolution of the x and y coordinates are plotted with
respect to time (Fig. 1, B and C; and a summary of the inferred
pathproperties is shown inFig. 1D).This procedure allowseffi-
cient analysis of largepopulations of trajectories,which enables
FIGURE 1 Example of the changepoint analysis method applied to lysosoma

and red is the end of the trajectory. The corresponding time-lapse images and an

(Fig. S2). (B and C) The t-versus-x and t-versus-y time series of the original tra

mentation procedure is overlaid in red. (D) The estimated duration, speed, and

estimated speed is greater than 100 nm/s. To see this figure in color, go online.
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rigorous comparisons of path properties among different
groups. This provides a more detailed approach than methods
that rely on comparison of MSD slopes. After establishing a
threshold for motile and stationary behavior, we can compare
the time spent in these different states, aswell as the distribution
of lysosome speeds while motile. With these methods, we are
able to show that the intracellular region, perinuclear or periph-
ery, of the lysosomes is an important factor to consider in the
study of intracellular transport. Although larger lysosomes
have a slightly slower speed of transport, this effect is small
relative to the effect of intracellular region.
MATERIALS AND METHODS

Cell culture, fluorescent labeling, and sucrose
treatment

BS-C-1 monkey kidney epithelial cells (obtained from the Duke University

Cell Culture Facility) were cultured in Dulbecco’s modified Eagle medium
l motion. (A) Original trajectory (20 Hz). Green is the start of the trajectory

analysis of localization uncertainty are included in the Supporting material

jectory. The dashed lines represent the changepoints. The result of the seg-

state of each segment in the trajectory. A segment is labeled motile if its
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(catalog no. 12100046; Thermo Fisher Scientific, Waltham, MA). A549

human lung epithelial cells (obtained from the Duke University Cell Cul-

ture Facility), described in the Supporting information, were cultured in

F-12K medium (catalog no. N3520; Sigma-Aldrich, St. Louis, MO). Be-

sides cell culture medium, all other conditions were identical for the two

cell lines. Culture media was supplemented with 10% fetal bovine serum

(FBS; catalog no. 10437028; Thermo Fisher Scientific), and cells were

incubated at 37�C and 5% carbon dioxide. Cells were passaged with trypsin

(catalog no. 25200072; Thermo Fisher Scientific) every 2–3 days. For im-

aging experiments, 35-mm optical dishes were used (catalog no. 150682;

Thermo Fisher Scientific).

For live-cell imaging and single-particle tracking, cells were transduced

with CellLight Lysosomes-green emerald fluorescent protein (BacMam 2.0,

catalog no. C10596; Thermo Fisher Scientific) to fluorescently label lyso-

somes. Transduction was carried out according to the manufacturer’s instruc-

tions, with 7.5 mL found to be the optimal volume. Immunofluorescence was

used to label lysosomes for the measurement of diameter and is described

below.

Sucrose (50 mM, 24 h; catalog no. JTB-4072-01; J.T. Baker, Phillips-

burg, NJ) was used to selectively enlarge lysosomes as described previously

(11,20–22).

Immunofluorescence

Immunofluorescence using a Cy3-lysosome associated membrane protein 1

(LAMP1) antibody (catalog no. ab67283; Abcam, Cambridge, UK) was

used to label lysosomes for measurement of diameter. Cells were fixed

with 4% paraformaldehyde (catalog no. 15710; Electron Microscopy Ser-

vices, Hatfield, PA) in phosphate-buffered saline (PBS; catalog no.

21300-025; Thermo Fisher Scientific) for 10 min at room temperature.

The cells were then washed with PBS and permeabilized (10% FBS,

0.3% bovine serum albumin [catalog no. A2153; Sigma-Aldrich],

0.00005% Triton-X 100 [catalog no. T8787; Sigma-Aldrich]) in PBS for

3–5 min at room temperature. Cells were washed with PBS and blocked

(10% FBS, 0.3% body surface area in PBS) for 1 h at 4�C. After 1 h, the

blocking buffer was removed and replaced with fresh blocking buffer and

the Cy3-LAMP1 antibody (1:750). The cells were stained for 3–18 h at

4�C and washed with PBS. 40,6-Diamidino-2-phenylindole (DAPI) was

used as a nuclear stain (catalog no. 10236276001; Sigma-Aldrich; 50 mM

in PBS, 4�C for 30 min).

Immunofluorescence images were recorded with an inverted microscope

(IX-71; Olympus, Tokyo, Japan) using a 1.20 N.A., 60�, water-immersion

objective (UPlanSApo 60�/1.20w; Olympus) with TRITC (Cy3-LAMP)

andDAPIfilter cubes and anelectron-multiplying charge-coupled device cam-

era (DU-888E; Andor, Belfast, United Kingdom). To minimize selection bias

for lysosome diameter measurements, a grid of 750-mm2 squares was overlaid

on each image using ImageJ (23). The lysosome closest to the left of each

square was selected (the lower in the event of two left-aligned lysosomes)

for analysis and measured along its long axis using the line tool in ImageJ.

Live-cell imaging and single-particle tracking

Live-cell imaging and single-particle tracking were used to observe and

characterize lysosome motion. Live-cell imaging was carried out using a

spinning disk confocal microscope (IX-81 [Olympus], CSU-X1 confocal

scanning unit [Yokogawa, Tokyo, Japan], iXon X3 camera [Andor], and

MetaMorph version 7.8.2.0 software [Molecular Devices, San Jose, CA]).

Images were collected using the green fluorescent protein excitation filter,

with the stream function (MetaMorph) used to control exposure time, field-

of-view area, and gain for the desired frame rate. These thin (�5 mm)

epithelial cells, combined with confocal microscopy, provide a two-dimen-

sional framework and are considered isotropic for particle tracking (24).

Motion in the z dimension would be observed as the loss of a particle during

tracking as it moves out of the focal volume. This was not observed in the

trajectories. Time-lapse images were exported to FIJI (version 2.0.0-rc-69./

1.52p), noise was removed with the despeckling filter, and the TrackMate
macro was used to track lysosomes (25). A comparison of raw and

despeckled images confirmed that the despeckling filter did not affect

analysis (Fig. S1). To minimize bias, a random number generator was

used to select 40 trajectories from each observed cell. Handling of tracker

error is described below (Preparation of the data). For each accepted

trajectory, lysosome diameter was measured along the long axis using the

line tool. These diameter measurements were used to define ‘‘large’’ and

‘‘small’’ lysosomes for comparison of speeds during motile transport. The

perinuclear region was defined by identifying the nucleus in the fluores-

cence microscopy images and defining a border between the densely

packed lysosomes and the sparser population in the periphery.
Preparation of the data

Particle-tracking software regularly makes errors, and all trajectories were

confirmed manually. Trajectories with unphysical motion, switching to a

different particle, or loss of a tracked particle for greater than five

consecutive frames were not used for further analysis. Less obvious tracker

errors, such as the software switching briefly to a different trajectory or

temporarily switching to a high-intensity pixel that does not correspond

to a physical object, were removed and replaced using the following

procedure. First, because the first or last steps of reported trajectories

were so commonly tracker errors, we removed them from all trajectories.

Next, we fit a smooth spline to the t-versus-x and t-versus-y components

of the lysosome trajectory (R command smooth.spline with 10 degrees of

freedom) to set a baseline for comparison. At each time point, tn, we

computed the distance between the reported particle location and the

smooth spline projection. A point was labeled an outlier if its distance

was greater than the 75th percentile by a factor of 2.5 times the interquartile

range. An example of this labeling technique to identify outliers has been

described previously (26), but with multiplicative factor 1.5 instead of

2.5. We made the adjustment to account for variation in the accuracy of

the spline. If the first or last point of a trajectory (the second or second to

last point in the original trajectory) was considered an outlier, we removed

it. Otherwise, we replaced the outlier by selecting a position that was

normally distributed with a mean located at the spline location associated

with the appropriate time and a standard deviation estimated from a subset

of typical paths. There were also occasional missing data points. We used

the same process to generate artificial data points when obeservations

were not evently spaced in time.
MATHEMATICAL MODELS

Numerous methods are available for analyzing particle
trajectories and identifying underlying biophysical states,
and a number of tools have been developed for studying the
MSD of trajectories in particular (see Monnier et al. [27]
for one example and Manzo and Garcia-Parajo [28] for a re-
view). However, MSD calculations average over an entire
path (or over multiple paths) and short-lived changes of state
can be missed. Therefore, some more recent methods have
been developed to identify changes of state within individual
particle trajectories. Some focus on discovering changes in
diffusivity (29,30), while others are focused on discrete-
step transitions (31), changes in velocity (32,33), or changes
in velocity or diffusivity (34).

On the basis of an analysis conducted by Jensen et al. (33),
we selected the bcp algorithm, implemented in R, to partition
the paths into segments (see below for further discussion).
Once a segmentation was selected for a given path, we
modeled the data as piecewise-linear plus stationary noise.
Biophysical Journal 121, 1205–1218, April 5, 2022 1207
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Suppose that a lysosome is observed at times ftigni¼1, and
the observed locations are 4 ¼ fðxi; yiÞgni¼1. (Vectors in
this work aremarked in boldface type.) To analyze the trajec-
tories, we assume that they are composed of a sequence of
segments in which motion is essentially linear with constant
speed but subject to stationary fluctuations that arise from a
combination of measurement error and Brownian diffusion
while constrained within the cell. In terms of notation, we
introduce the following. For each path, there is a finite set
of K changepoints, c ¼ ðc1;.; cKÞ. When necessary, we
will adopt the convention c0 ¼ 0 and cKþ1 ¼ T, where T is
the final time of observation. Associated with each segment
is a velocity vector, and we write this set of velocities
fðuk; vkÞgKþ1

k¼1 .When referring to an entire observed lysosome
trajectory, wewrite4; when referring to the piecewise-linear
approximation that we derive for it, we write b4.

Model for lysosome observations

We treat the lysosome observations as being Gaussian fluc-
tuations around a sequence of unobserved anchor locations,
which are denoted fðai; biÞgni¼1. We write

xi ¼ ai þ
ffiffiffi
b

p
ε
ðxÞ
i ; yi ¼ bi þ

ffiffiffi
b

p
ε
ðyÞ
i ; (1)

Here, fðεðxÞi ; ε
ðyÞ
i Þgni¼1 is a sequence of independent and

identically distributed two-dimensional standard normal
random variables with noise magnitude b that is the conflu-
ence of physical fluctuations, imprecision in the anchor
location, nonlinear microtubules, and experimental error.
Because we will not be studying any of these effects, we
will not attempt to separate them properly in the model.

As discussed before, we model the anchor trajectories as
being piecewise-linear. Using the notation introduced in the
previous section, within each segment of constant velocity
we have

ai ¼ vkðti � tck�1
Þ þ ack�1

; (2)

where k˛f1; 2;.;Kþ1g is the index of the segment, and
i˛fck�1 þ1;.ckg. From this approximation we infer quan-
tities such as segment duration and velocity and construct
empirical speed distributions to capture heterogeneous
behavior among trajectories for a given population.
Model for transport states and state switching

Our analysis makes no assumptions concerning the specific
biological interactions of the lysosome. In comparison, pre-
vious mathematical models of transport have involved vary-
ing degrees of detail in delineating distinct biophysical
states. For example, classic tug-of-war models have been
expressed in terms of the number of anterograde and retro-
grade motors that are simultaneously engaged with the
cargo and the microtubule (35–37). Switching rates were
1208 Biophysical Journal 121, 1205–1218, April 5, 2022
defined in terms of the distribution of force among the
motors. Other models have been expressed in terms of a
finite number of distinct transport speeds, with switching
rates that are more phenomenological (38–41). The choice
of what type of model to use and what kind of inference
to implement depends on the granularity of the data and
what is necessary to address the scientific questions of
interest. As described in detail in Results and discussion,
we do not observe multimodality in the speed distribution.
It follows that a finite-set-of-speeds model, such as a hidden
Markov model, is inappropriate for this dataset.

Although the underlying motor dynamics, cytoskeleton,
and cytosolic crowding are not known, we do find it useful
to introduce a post hoc decomposition of the path segments
into two descriptive ‘‘states’’: motile and stationary. What is
important from amethods perspective is that the classification
is entirely descriptive: whenwe conduct inference on change-
points and associated speeds, we do not make a simultaneous
or conditioned inference on motor state. Motile refers to the
spectrum of biophysical states that result in an average speed
of more than 100 nm/s, as inferred by the changepoint algo-
rithm. The remaining segments are labeled stationary. We
emphasize that these segments are not stationary in the math-
ematical sense that the distribution of the lysosomeswithin the
state is invariant over time. We use the term in its colloquial
sense that the lysosomes are not moving very much (Fig. S3).

With these caveats in mind, wewrite the sequence of states
as a discrete stochastic process fJkgKþ1

k¼1 . For all k, Jk takes its
values either as 0 (stationary) or 1 (motile). We model J as a
Markov chain with fixed transition probabilities:

Stationary / Motile : PðJkþ1 ¼ 1 j Jk ¼ 0Þ ¼ p;

Stationary /Stationary : PðJkþ1 ¼ 0 j Jk ¼ 0Þ ¼ 1� p;
Motile /Stationary : PðJkþ1 ¼ 0 j Jk ¼ 1Þ ¼ q;
Motile / Motile : PðJkþ1 ¼ 1 j Jk ¼ 1Þ ¼ 1� q:
In an abuse of notation, when we want to emphasize the
state as a function of time, we will write the state-switching
process as fJðtÞgtR0.

Consistent with the usual assumptions for continuous-
time Markov chains (CTMCs), we assume that the
random durations of segments are exponentially distributed
with different rate parameters for the two different states
(Fig. 2):

Duration of Motile segments : tk � ExpðmÞ;
Duration of Stationary segments : sk � ExpðlÞ:

In a typical CTMC, it is required that the system change
from one state to the other when a segment ends. In this



FIGURE 2 Sketch of a hypothetical sequence of states for a lysosome trajectory. Note that the beginning and ending segments are only partially observed.

A mathematical model is required to estimate the average duration of stationary and motile segments, and the proportion of time spent in each state. To see

this figure in color, go online.
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dataset, though, it is common to switch from one kind of
motile state to another. For example, molecular motors
transporting a lysosome might switch from one microtubule
to another. This appears to occur in the trajectory displayed
in Fig. S4. This would register as a change in velocity
(though the speed along the microtubules might be the
same) and the changepoint algorithm will identify this as
a change. We record this as a motile / motile transition.
Similarly, subtle changes in direction while stationary can
be inferred as a stationary / stationary transition
(Fig. S5). This deviation from the usual assumptions for
CTMCs will play an important role in the analysis that fol-
lows. In Fig. 2, we display a plausible sequence of states
with associated state durations.
MATHEMATICAL ANALYSIS AND STATISTICAL
METHODS

Velocity estimation for individual segments

Once a trajectory was segmented, we estimated each seg-
ment’s velocity and starting location using orthogonal
least-squares regression and maximum likelihood estima-
tion (MLE). Suppose that we have position observations
fðx1; y1Þ;.; ðxn; ynÞg at times ft1;.; tng that are associated
with a constant velocity state. Let ðu; vÞ denote the velocity
vector, and let ða; bÞ denote the initial location of the unob-
served anchor. Then the likelihood associated with the
model defined in Eqs. 1 and 2 is

Lðx; y; t ; u; v; a; b; bÞ

¼
Yn
i¼ 1

1ffiffiffiffiffiffiffiffiffi
2pb

p expð � 1

2b
½ðxi � ðaþ utiÞÞ2

þðyi � ðbþ vtiÞÞ2
�Þ

(3)

We use standard regression notation,

x ¼ 1

n

X
i

xi; t ¼ 1

n

X
i

ti

Sxx ¼
X
i

x2i ; Sxt ¼
X
i

xiti; Stt ¼
X
i

t2i ;

(4)
with analogous definitions for y, Syy, and Syt. For a
given parameter set, the residual sum of squares (RSS) is
written

RSSðx; y; t ; u; v; a; bÞ

:¼
Xn
i¼ 1

½ðxi � ðaþ utiÞÞ2 þ ðyi � ðbþ vtiÞÞ2
�
:

(5)

As such, the log likelihood can be written

‘ðx; y; t ; u; v; a; b; bÞ

¼ �n

2
lnð2pbÞ � 1

2b
RSSðx; y; t ; u; v; a; bÞ: (6)

The resulting MLEs are

bu ¼ Sxt � nxt

Stt � nt 2
;

ba ¼ xStt � tSxt

Stt � nt 2
;

bb ¼ 1

2n
RSSðx; y; t ; bu;bv; ba; bbÞ;

(7)

where bv and bb are defined analogously with bu and ba, and we
emphasize that the RSS function is evaluated using the
MLEs for the other parameters. The linear approximation
for a segment is then writtenbxi ¼ buiti þ ba;byi ¼ bviti þ bb: (8)

The speed of the associated segment is bsi :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibu2i þ bv2iq
.

Piecewise-linear approximations for lysosome
trajectories

As a result of the survey conducted by Jensen et al. (33), we
selected a Bayesian method, bcp, which is based on work by
Barry and Hartigan (42) and has been implemented in the
programming language R by Erdman and Emerson (43).
Biophysical Journal 121, 1205–1218, April 5, 2022 1209
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We applied the algorithm to the increments of a nine-step
moving average (using rollmean in R). The bcp algorithm
assumes a product partition model for the data it is applied
to. In this model, the path is partitioned into segments, there
is a baseline mean that is inferred, and the mean value of
each segment is assumed to be independent of the means
in the other segments. The variance of the segment means
about the baseline is inversely proportional to the length
of the segment. Within each segment, the data points are
assumed to be independent and identically distributed. It
is assumed that the variance of the steps is constant
throughout the whole trajectory. There are examples of
paths that appear to have changes in variance, but variation
did not appear to be large enough to affect performance
(Fig. S6).

To run the algorithm, there are three hyperparameters (pa-
rameters set by the practitioner that inform the Bayesian
prior distribution but are not themselves inferred; see Robert
[44] for a detailed discussion) that must be specified: the
assumed rate at which changes occur, g; the probability
that any given step is a changepoint (assuming an exponen-
tial distribution for the segment durations, this is p0 ¼ 1�
e�gDt); and a weight parameter w0, which we set to 0.01,
that guides the allowable variation in inferred segment
means (42).

Because it is a Bayesian method, the bcp algorithm pro-
duces Markov-chain Monte Carlo samples approximately
from the posterior distribution of the changepoint vector.
For each path, we produced 2,500 samples and discarded
the first 1,000 as a ‘‘burn-in’’ set. From among the remain-
ing 1,500, we selected one ‘‘representative’’ changepoint
vector for the path to then use to study the speed distribu-
tion and state-switching properties. To select a path’s repre-
sentative changepoint vector, we computed the distribution
of the number of changepoints among the path’s posterior
samples and identified the mode of that distribution. From
among all posterior changepoint vectors that had the same
number of changepoints as the mode, we took a random
subsample. For each changepoint vector in the subsample,
we constructed a piecewise-linear approximation of the
path (as described in the previous subsection) and
computed its L2 distance from the original path. By L2 dis-
tance, we mean for two paths observed at times ftigni¼1,
jj f � g jj2L2 :¼ 1

n

Pn
i¼1j f ðtiÞ� gðtiÞ j2. Among the change-

point vectors in the subsample, we identified the one whose
piecewise-linear approximation was closest to the original
path in terms of L2 distance and chose this as the represen-
tative b4 of the path 4. This method effectively uses the
Markov-chain Monte Carlo sampling from the posterior
distribution defined by bcp to identify a representative
changepoint vector that has likelihood close to the
maximum under the piecewise-linear-with-Gaussian-fluctu-
ations model described above. In Fig. S7, we provide a
scatterplot that shows the relationship between speeds
from one segment to the next.
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Parameter estimation for state-switching model

Given a set of piecewise-linear path approximations, we
used a Bayesian approach to estimate the parameters of the
state-switching model fJkgk˛N. To proceed with estimating
the parameter set q ¼ ðl;m; p; qÞ given a set of piecewise-
linear approximations for N trajectories, fb4ngNn¼1, we
articulated the likelihood function Lðq ; fb4ngÞ and the prior
distributions pl, pm, pp, and pq of the parameters, which
together form the total prior distribution pðqÞ ¼
plpmpppq. The posterior distribution is then given by the
Bayes formulation

pðq j fb4ngÞ¼c Lðq ; fb4ngÞ pðqÞ; (9)

where ¼c means ‘‘equal up to a constant that does not
depend on q.’’ The likelihood function that we used
is derived in the Appendix. For the priors, we chose
invariant Jeffreys priors, which are improper distributions
(they do not integrate to one), but they yield proper poste-
rior distributions and the associated estimators here are
unbiased (see Robert [44] for one introduction on the
topic).

In the Appendix, we show that the posterior distributions
for the model parameters are independent and have the form

ljb4 � GammaðnS; sÞ; mjb4 � GammaðnM; tÞ;
pjb4 � BetaðnSM; nSSÞ; qjb4 � BetaðnMS; nMMÞ; (10)

where s and t are the total times that the lysosomes spent in
the stationary and motile states; nS and nM are the number of
stationary and motile states in the collections of piecewise-
linear approximations fb4ng; and nSM, nSS, nMS, nMM are the
numbers of switches of the observed types (e.g., nSM is the
number of stationary to motile switches). The means of
these distributions give reasonable point estimates for
each of the associated parameters. For the switch rates,
the posterior-mean point estimates are bl ¼ nS=s (number
of stationary states divided by the total time spent station-
ary) and bm ¼ nM=t. For the switch probabilities, the
posterior-mean point estimates for stationary to motile and
motile to stationary are bp ¼ nSM=ðnSM þnSSÞ and bq ¼
nMS=ðnMS þnMMÞ, respectively.
Bayesian uncertainty quantification for trajectory
properties

We can use the posterior distributions for the parameters
and the mathematical model to estimate (with quantified
uncertainty) various properties of lysosome trajectories.
In particular, we will derive an estimate for the proportion
of time spent in the motile state (to show consistency with
a direct estimation method described in Results and
discussion) and will estimate the model prediction for
the duration of motile and stationary periods. In each



Regional dependence of lysosomal motion
case, the uncertainty quantification (UQ) method proceeds
as follows:

1. We analyze the model to determine its prediction for the
quantity of interest given a set of parameters ðl;m;p;qÞ.

2. We draw 2,000 samples from the posterior distributions
of the parameters given in (10).

3. For each parameter sample, we compute the associated
model prediction for the quantity of interest. We call
this set of predictions the quantity’s posterior UQ distri-
bution.

4. Our point estimate for the quantity of interest is the mean
of the posterior UQ distribution.

5. The 95% credible region for the quantity of interest is the
range of posterior UQ distribution values that fall be-
tween the 2.5th and 97.5th percentiles.

If the posterior UQ distribution is approximately symmet-
ric, then we report these values in the form of the mean plus
or minus half the width of the credible region. In the two
following subsections we describe our model’s predictions
for proportion of time in the motile state and the average
duration of motile/stationary periods, which are used in
step 1 of the UQ method.

Model prediction for asymptotic proportion of time spent in
motile state

Recall that in our state-switching model, the process
fJðtÞgtR0 takes the value 1 if the lysosome is in a motile
segment at time t and 0 otherwise. The long-term proportion
of time in the motile state, denoted aN, can then be written

aN :¼ lim
T/N

1
T

R T

0
JðtÞdt: (11)

The quantity lp serves as the effective rate of transition
from stationary to motile; l is the rate at which a stationary
segment ends and is multiplied by the probability p that a
switch occurs. Similarly, mq is an effective switch rate
from motile to stationary. As a two-state system, the long-
term probability of being in the motile state is

aNðl;m; p; qÞ ¼ lp

lpþ mq
: (12)

A mathematically rigorous derivation of this calculation
can be accomplished through use of the renewal-reward the-
orem (45).

Model prediction for length of motile/stationary periods

The model described above assumes that path segments
have durations that are exponentially distributed in time
(rate parameter l for stationary segments and m for motile
segments). Then when a segment is complete, there is a
probability transition matrix to determine what the next state
will be. The transition probabilities are denoted p for sta-
tionary / motile, 1� p for stationary / stationary, q for
motile / stationary, and 1� q for motile / motile. In
this way, the model allows motile / motile transitions in
which a lysosome either changes speeds (say, from 200 to
500 nm/s) or changes direction. In our model, each switch
is considered to be an independent event.

When there are consecutive motile (respectively, station-
ary) segments, we call the union of these segments motile
(stationary) periods. Suppose that the initial state is motile,
and let N be the number of consecutive motile states,
including the initial state. The switches can be viewed as a
sequence of independent weighted coin flips in which the
‘‘success probability’’ is q, the probability of switching
from motile to stationary and ending the motile period. As
such, the expected length of a motile period can be
computed using Wald’s equation. Recalling that the lengths
of motile segments are denoted ti, each with mean 1=m, the
expected length of a motile period is

E

 XN
i¼ 1

ti

!
¼ EðNÞEðt1Þ ¼ 1

mq
: (13)

Similarly the expected length of a stationary period in the
model is 1=lp.
Bootstrap method for comparing speed
distributions

For a given dataset x :¼ fxigNi¼1, its empirical cumulative
distribution (ecdf) is the function

Fðx ; xÞ ¼ 1

N

XN
i¼ 1

1fxi%xg: (14)

That is, for any value x, it is the fraction of the dataset that
is less than x. In comparing probability distributions based
on finite samples, the ecdf is a more stable mathematical
object than a histogram or kernel density estimator. The
classical Kolmogorov-Smirnov test, which can be used to
test the null hypothesis that a dataset is drawn from a given
probability distribution, uses the ecdf of the data and de-
fines its distance to the true distribution by taking the
maximum over all absolute differences between the ecdf
and the theoretical cumulative distribution. For our applica-
tion, there is no theoretical distribution for the motile state
lysosome speeds. Nevertheless, we would like to test
whether the two distributions may have come from the
same distribution. We used the following bootstrapping
approach.

First, we define a distance between the ecdfs of two
different samples x :¼ fxigNi¼1 and z :¼ fzigMi¼1:

Dðx; zÞ :¼ sup
0%x<N

����Fðx ; xÞ � Fðx ; zÞ
����: (15)
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The question of interest is whether a given distance is sta-
tistically significantly large. In our application, the compar-
ison of ecdfs is further complicated by the fact that our
datasets have different sample sizes. To account for both
sources of noise—intrinsic randomness in each dataset
and extrinsic randomness due to differences in sample
size—we constructed a bootstrap distribution of ecdfs for
the larger of the datasets in which each bootstrap sample
has the size of the smaller dataset. That is to say, suppose
that the size of x is N and the size of z is M<N. Then we
create a bootstrap sample (we denote the jth subsample
xðjÞ from x by takingM independent draws from its members
with replacement after each draw). We created 10,000 such
bootstrap samples and for each recorded the distance

Dj : ¼ D
�
x; xðjÞ

�
: (16)

To construct a 95% confidence interval for M-sized sub-
samples from the N-sized dataset x, we extracted the 95th
percentile value from the bootstrapped set of D statistics,
fDjgJj¼1

. If the distance between the two observed datasets
Dðx; zÞ is greater than the 95th percentile of bootstrapped
D statistics, then we say there is sufficient evidence to reject
the null hypothesis that the two datasets were drawn from
the same probability distribution.
RESULTS AND DISCUSSION

Path-by-path analysis of lysosomal motion shows
switching behavior

Lysosomes were fluorescently labeled with LAMP1-
emerald green fluorescent protein to track their intracellular
motion. This fluorescently labeled protein is expressed on
the outer membrane of the lysosome. Images were recorded
at a frame rate of 20 Hz over 30-s durations. This frame rate
allowed us to observe individual periods of motile transport,
roughly linear segments in which the lysosome traveled at a
near constant speed, and stationary motion, with lysosomes
fluctuating in a restricted region over long segments of time.
This confined motion could be due to the lysosome’s being
tethered to a microtubule or endoplasmic reticulum or local
crowding in the cytoplasm. In Materials and methods we
described our approach to partitioning individual lysosome
paths into segments of constant velocity and estimating
the speed within each segment (Fig. 1, as described in the
Introduction, and see also Figs. S3–S6 for more examples.).

Often, in many mathematical models of molecular-motor-
based transport it is assumed that there are a finite number
of distinct biophysical states, each with an associated charac-
teristic velocity (35–37,40). The present analysis did not
include direction of lysosome transport, and we did not
observe multimodality in the speed distribution. Rather, we
observed a smoothly spread-out distribution of speeds and
segment durations (Fig. S8). These plots show many short,
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fast-moving segments; many long, slow-moving segments;
and many short, slow-moving segments. (Long, fast-moving
segments are not observed in these 30-s trajectories.) In light
of this observation, we adopted a phenomenological two-state
labeling scheme. Lysosomes are consideredmotile if the esti-
mated speed in a segment is 100 nm/s or greater and stationary
otherwise. We are forced to establish a strictly positive
threshold because, within each segment, there is always
some displacement and the speed estimation method always
returns positive values. For example, in Fig. 1, the initial
segment is considered stationary, but it is clear that there is
some fluctuating movement in both the positive-x and posi-
tive-y directions. This movement could be due to diffusion
of the lysosome while it is not attached to a microtubule or,
if the lysosome is bound, by diffusional motion of the micro-
tubule. Similar fluctuations underlying in stationary segments
can be seen in Fig. S6 as well. The particular choice we made
follows from the scatterplots of segment durationversus speed
(Fig. S8; very few long, slow paths had an inferred speed
greater than 100 nm/s) and from a numerical experiment
that is described in the Supporting material and summarized
inFig. S9. To test for robustness,we also ran our analysis using
50 and 200 nm/s as the motile/stationary threshold. For
example, in Fig. S5 we display a path with a segment that
has an inferred speed of 75 nm/s. It is stationary in our
primary analysis, but could reasonably be considered slow
and motile. As expected, changing the threshold modifies
the estimated proportion of time spent motile, but the
important qualitative conclusions concerning regional
differences remained true (Table S1).
Lysosomes in the perinuclear region spend less
time in motile segments

Fluorescence microscopy images of lysosomes in cells lead
to two immediate impressions. First, lysosomes are more
concentrated in the perinuclear region and dispersed
throughout the periphery. Second, as noted above, intracel-
lular motion is varied with periods of unidirectional transport
and a range of speeds. In comparing transport properties as a
function of intracellular region, we found that lysosomes in
the perinuclear region spent less time in motile transport.
We used two methods to establish this conclusion. The first
was a straightforward statistical comparison in which we
computed the proportion of time spent motile within each
path and pooled these values to estimate the average propor-
tion within each experimental population. We quantified the
uncertainty using standard normal error. Using this method,
we found that lysosomes in the perinuclear region spent 5.3%
5 1.5% of their time motile, while those in the periphery
were 14.2% 5 1.8% motile (Table 1).

Although the path-by-path assessment of the proportion
of time spent motile can detect significant differences
among groups, it does not provide insight about which
aspects of transport are most responsible for the change.



TABLE 1 Values estimated from lysosome tracking data

Groups

n

M, S

Motile proportion

(direct estimate)

Motile proportion

(model estimate)

Average stationary

period (model estimate)

Average motile

period (model estimate)

Control cells

Perinuclear

209, 347 .053 5 .015 .059

(.044, .080)

72.5s

(58.3, 90.1)

4.59 s

(3.60, 5.76)

Control cells

Periphery

1,268, 947 .142 5 .018 .130

(.116, .148)

36.4 s

(32.9, 40.2)

5.46 s

(4.95, 6.04)

Sucrose-treated cells

Periphery, small lysosomes

992, 751 .139 5 .020 .136

(.118, .157

34.9 s

(31.3, 39.0)

5.51 s

(4.90, 6.17)

Sucrose-treated cells

Periphery, large lysosomes

643, 565 .121 5 .021 .116

(.099, .136)

35.6 s

(31.4, 40.1)

4.67 s

(4.09, 5.32)

The samples sizes (n) are the number of motile (M) and stationary (S) segments in each group. The total number of trajectories were equal for each group.

Proportion of time spent motile (‘‘Motile proportion’’) and average duration of stationary and motile periods (‘‘Average period’’) are defined in Mathematical

analysis and statistical methods. ‘‘Direct estimate’’ was computed by calculating the proportion of time spent motile on a path-by-path basis and averaging

over all paths. ‘‘Model estimates’’ were derived using our state-switching model, which is described in Parameter estimation for state-switching model. Un-

certainty for these quantities is expressed in terms of Bayesian 95% credible regions, provided in parentheses below each estimate. We consider a difference

to be significant if the credible regions associated with the two samples do not overlap. Boldface values are significantly different from comparison groups.

Results comparing perinuclear and peripheral transport in human lung cells (A549) (Table S3) and in sucrose-treated BS-C-1 cells (Table S5) were similar.

Regional dependence of lysosomal motion
For this purpose it is natural to try to estimate the average
duration of motile or stationary segments, but the shortness
of the observation window causes a problem. Consider the
path in Fig. 1, for example. We completely observe a motile
segment in the middle of the trajectory, but the two station-
ary segments are only partially observed. For the first
segment, we do not know how long it was stationary before
the observation window began. Similarly, the observation
window ends during the final stationary segment, but we
do not know how long it continues thereafter.

To address this problem of truncated segment durations,
we built a two-state Markov-chain model for the state-
switching dynamics of lysosomes along with an associated
Bayesian inference analysis to infer model parameters. We
then use the posterior distributions of the model parameters
to quantify uncertainty for different model predictions,
which then allows us to make statements about statistically
significant differences.

First, to demonstrate consistency with the path-by-path
estimation approach, we report on the model’s estimation
for the proportion of time spent motile. In the perinuclear re-
gion, motile state percentage was 5.9% (95% credible re-
gion [CR]: [4.4%, 8.0%]), while in the periphery the
motile percentage was found to be 13.0% (95% CR:
[11.6%, 14.8%]). To understand what accounts for this dif-
ference in percentage of time spent motile, we used the
model to estimate the average duration of periods of motile
transport (defined in Materials and methods) versus periods
of stationary transport. While the average length of motile
periods were not significantly different in the two regions,
the average length of stationary periods changed by a factor
of two. We found that average stationary period of perinu-
clear-localized lysosomes was 72.5 s (95% CR: [58.3 s,
90.1 s]), while in the periphery the value is 36.4 s (95%
CR: [32.9 s, 40.2 s]). Because the credible regions are not
overlapping, we consider the difference to be statistically
significant. Table 1 also reports these quantities for lyso-
somes in the periphery of the sucrose-treated cells,
described below, and we find similar results as those in
the periphery of the untreated control cells. In the Support-
ing material we provide estimates and credible regions for
the parameters of our Markov-chain model for state switch-
ing (Table S2). We also include state-duration estimates
(Table S3) and associated model parameter estimates (Table
S4) for lysosome trajectories in human lung cells (A549).
Model parameter estimations and state-duration estimates
for a regional comparison in sucrose-treated BS-C-1 cells
can be found in Tables S2 and S5, respectively.

The piecewise-linear approximations of the paths also pro-
vide a tool for quantifyingmovement while the lysosomes are
motile. For each study group,we pooled all estimated segment
speeds larger than 100 nm/s and conducted a bootstrap bias-
corrected and accelerated comparison of samples means. We
found that lysosomes in the perinuclear region had an average
motile-state speed of 449 nm/s (95% CI: [407 mm/s, 498 nm/
s]), while lysosomes in the periphery had an average motile-
state speed of 482 nm/s (95% CI: [461 mm/s, 505 nm/s]).
Aswe argue in a later subsection, even if this difference turned
out to be significantwith a greater number of replicates, such a
difference in velocity is small compared with the difference in
proportion of time spent motile.
Large lysosomesmovemore slowly during motile
segments than small lysosomes

Previous work (7–10), including our own (11), examined the
relationship between lysosome function, transport, and
diameter. Our previous work showed that diffusion was
slower for larger lysosomes, but unidirectional transport
was not affected (11). This previous research did not include
intracellular region. On the basis of the results described
above showing that lysosomal motion is a function of intra-
cellular region, we revisited this previous work, but now
including intracellular region as a factor in the analysis.
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Sucrose-mediated enlargement of lysosomes

The use of sucrose as a lysosome-specific osmotic agent to
increase the diameter of lysosomes has been described
previously (11,20–22). Sucrose dissolved in the cell culture
medium (50mM, 24 h) is internalized pinocytically accumu-
lating in and enlarging the lysosomes osmotically. It does not
alter the cytosol. Immunofluorescence microscopy was used
to image lysosomes (Cy3-LAMP1 antibody), and the
diameter was measured using ImageJ (Fig. 3). In untreated
cells, the lysosomes are visible as punctate spots with a
mean diameter and standard error of 763 5 14 nm
(n ¼ 101 cells, n ¼ 501 lysosomes). This value is just
above the point spread function of the microscope
(550 nm), allowing the possibility that smaller lysosomes
are not resolved. Lysosomes in the sucrose-treated cells
appear circular with a mean diameter and standard error of
1.075 0.026 mm (n ¼ 85 cells, n ¼ 389 lysosomes) greater
than the diffraction limit of the microscope. Previous work
has shown that increased concentrations of sucrose
(100mM) lead to a greater percentage of enlarged lysosomes
but no further increase of diameter (11). Lysosome diameter
has previously been reported, with values ranging from 50
to 500 nm (1), as a function of cell type. For example, mouse
macrophage lysosomes were reported with an average
diameter of 136 nm (n ¼ 4,850 lysosomes) and rat kidney
fibroblast lysosomes with a diameter of 300–400 nm, both
characterized using transmission electron microscopy
(46,47). Early centrifugal sedimentation experiments using
rat livers led to a calculated diameter of 400 nm (48). Our
own experiments with the same BS-C-1 cells reported a me-
dian lysosome diameter of 520 nm, likely an overestimate, as
smaller lysosomes were not resolved (11).

In comparison with the static immunofluorescence micro-
scopy images (Fig. 3), live-cell imaging at 20 Hz had a
decreased signal-to-noise ratio, although the size difference
1214 Biophysical Journal 121, 1205–1218, April 5, 2022
between untreated and sucrose-treated cells is still discern-
ible. Untreated (n ¼ 26) and sucrose-treated (n ¼ 32) cells
were imaged in different dishes and at different passage
numbers, and 40 lysosomes/cell were randomly selected
for analysis (n ¼ 988 trajectories for untreated cells and
n¼ 1,240 trajectories for sucrose-treated cells). For analysis
of single lysosomes trajectories, the threshold value be-
tween ‘‘large’’ and ‘‘small’’ lysosomes chosen was
687 nm, which is the median value of the sucrose-treated
lysosome diameters resolvable with the 20-Hz data (control
median ¼ 631 nm, sucrose-treated median ¼ 687 nm; p <
0.0001, Kolmogorov-Smirnov test). Considering the depen-
dence on intracellular region described above, we compared
the motion of small and large lysosomes, all located at the
periphery of sucrose-treated cells, in the main text, below.
A separate analysis comparing transport in the perinuclear
and peripheral regions of sucrose-treated cells yielded the
same trends as untreated cells (Tables S5 and S7).

We found that large lysosomes were slower in motile
transport than small lysosomes. For a quantitative compari-
son, we studied the speed distributions for segments with
100 nm/s or larger inferred speed for large and small
lysosome populations, all located in the cell periphery. A
comparison of the means yielded a statistically significant
difference, though the difference was only 45 nm/s (Table 2).
The distributions are not normally distributed. The mean
speeds of the populations were between 400 and 500 nm/s
with large sample standard deviations, between 300 and
400 nm/s. As such, the speed distributions were found to
be skewed, with a mode around 200 nm/s, but large tails
featuring speeds as high as 2,000 nm/s. To visualize the den-
sities we used kernel density estimation (density in R with
default bandwidth parameter) and show the results for our
two comparison groups in Fig. 4. In Fig. 4 A, we compare
regions (lysosomes in control cells in the perinuclear region
FIGURE 3 Sucrose-mediated enlargement of

lysosomes. (A) Immunofluorescence image of un-

treated cells with Cy3-LAMP1 labeled lysosomes

(green) and DAPI-labeled nuclei (blue). The inset

has a scale bar of 5 mm. (B) Sucrose-treated cells

(50 mM, 24 h). (C) Diameter of individual lyso-

somes in untreated cells (n ¼ 101 cells, n ¼
510 lysosomes). The mean is shown with a

dashed line and the median with a dotted line.

The distribution of the lysosomes in the untreated

cells is likely an overestimate as small lysosomes

are below the diffraction limit of the microscope.

(D) Diameter of individual lysosomes in sucrose-

treated cells (n ¼ 85 cells, n ¼ 389 lysosomes).

(E) Mean and standard error of lysosome diame-

ters in untreated (0 mM) and sucrose-treated

(50 mM, 24 h) cells. ****p < 0.0001, Kolmo-

gorov-Smirnov test. To see this figure in color,

go online.



TABLE 2 Within each of the groups, we pooled all inferred

speeds from segments labeled as motile (100 nm/s or greater)

Group Average motile speed

Control cells

Perinuclear region

449 nm/s (407, 498)

Control cells

Peripheral region

482 nm/s (461, 505)

Sucrose-treated cells

Periphery, small lysosomes

470 nm/s (449, 494)

Sucrose-treated cells

Periphery, large lysosomes

425 nm/s (401, 452)

These are the estimated average speeds of each group, with 95% bias-cor-

rected and accelerated bootstrap confidence intervals in parentheses (49).

We used a permutation test for two-sample comparisons. The p value for

the comparison by region was 0.257. The comparison for large/small in

the periphery of the sucrose-treated cells had a p value of 0.0112, indicating

a significant difference between the groups’ averages. The effect of size is

small, 50 nm/s. Results comparing perinuclear and peripheral transport in

human lung cells (A549) (Table S6) and comparing region in sucrose-

treated BS-C-1 cells (Table S7) were similar.

Regional dependence of lysosomal motion
[black] versus periphery [blue]), and in Fig. 4 B, we
compare diameters (large [black] versus small [blue]) within
the periphery. All density estimations exhibit the skewness
FIGURE 4 Visualizations of the differences among motile speed distribution

segments are provided in Table 1 and described below. (A and B) Empirical k

Note that all speeds included in these samples are larger than 100 nm/s and the ‘‘o

density estimation technique. (C and D) Associated ecdfs for these populations (s

(light blue curves). The subsample ecdfs create a shaded region (light blue) that s

means of these speed distributions are displayed as vertical dashed lines. The sucr

sizes are as follows: (A and C) control cells; periphery (blue, n ¼1,268) and per

992) and large (black, n ¼ 643) lysosomes in the periphery of sucrose-treated

whisker plots for these samples can be found in Fig. S10. Results comparing

sucrose-treated BS-C-1 cells were similar (A549: Fig. S11 and Table S6; suc

go online.
described above. The means are seen as the vertical dashed
lines in Fig. 4, C and D.

Although kernel density estimation provides a qualitative
comparison, ecdfs provide a quantitative comparison and
a notion of significant difference. To this end, for each trajec-
tory group, we computed the ecdfF so that FðyÞ is the propor-
tion of segments whose associated lysosome speeds are less
than y mm/s. We used the Kolmogorov-Smirnov D distance
to measure the difference between two distributions and a
nonparametric bootstrapmethod for assessing statistically sig-
nificant difference (described in Materials and methods). In
Fig. 4 D, the shaded region around the black ecdf represents
a ‘‘confidence band,’’ and the fact that the black curve is
outside the confidence band indicates that there is a significant
difference in the speed distributions of large and small lyso-
somes in the cellular periphery. The 95% one-sided bootstrap
confidence interval for the null hypothesis that the black ecdf
has the same generating distribution as the blue ecdf was
D<0:051. The distance between the two data samples was
Dsamples ¼ 0:088 with an implied p value of less than 0.001.
As a benchmark,we ran this analysis for the comparison by re-
gion as well. As the black curve (control group, perinuclear
s for different group comparisons. Sample sizes for the number of motile

ernel density estimations for the inferred speeds of the indicated groups.

verhang’’ observed from 0–100 nm/s is an unavoidable artifact of the kernel

olid curves) and the ecdfs for bootstrapped subsamples of the larger sample

hows the range of variability that arises purely because of subsampling. The

ose-treated comparison in (B) and (D) are restricted to the periphery. Sample

inuclear (black, n ¼ 209); (B and D) sucrose-treated cells; small (blue, n ¼
cells. See Table 2 and Materials and methods for further details. Box-and-

perinuclear and peripheral transport in human lung cells (A549) and in

rose-treated BS-C-1: Fig. S12 and Table S7). To see this figure in color,
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region) in Fig. 4C falls within the confidence band of the blue
curve (control group, periphery), the difference is not signifi-
cant (95% CI: D<0:092, Dsamples ¼ 0:056, p ¼ 0:49). This
result is consistent with the comparison of means reported
above for the periphery and perinuclear regions (Table 2).
For validation of the described bootstrap method, we also im-
plemented a permutation test in the form described in Efron
andTibrashani (chapter 16) (49). For the small/large lysosome
comparison, the permutation test one-sided 95% CI was D<
0:067, implying a p value of 0.0033. Meanwhile, the regional
comparison yielded a 95%CI ofD<0:101, implying a p value
of 0.580.

Although there is a significant difference in speed while
motile, we did not find any significant differences in consid-
ering percentage of time in motile transport, average motile
period, or average stationary period (Table 1). This observa-
tion suggests avenues for future biophysical studies. For
example, it could suggest that although the stepping rate of
motors responsible for carrying out lysosome transport is sus-
ceptible to decrease with drag force, the on-rate/off-rate
properties are unaffected by this degree of difference in load.
TABLE 3 Predicted effective diffusivity for each of the

comparison groups

Group Deff

Control cells

Perinuclear region
0.00135

mm2

s

Control cells

Peripheral region
0.00408

mm2

s

Sucrose-treated cells

Periphery, small lysosomes
0.00438

mm2

s

Sucrose-treated cells

Periphery, large lysosomes
0.00286

mm2

s

The difference in proportion of time spent motile has a greater impact on

transport than the effect due to size. Results comparing perinuclear and pe-

ripheral transport in human lung cells (A549) were similar (Table S6).
Intracellular location, not diameter, is a key factor
in lysosomal motion

We have established that intracellular region and lysosome
diameter can affect different aspects of lysosome transport.
In this section we show that the regional differences have a
greater impact on overall transport. There are two prominent
measures of overall transport that we might consider,
effective velocity and effective diffusivity, and the choice
for which measure is appropriate follows from the geometry
of the cells and microtubules. For example, intracellular
transport in axons is strongly biased in one direction:
kinesin-based transport on a predominantly plus-end-out
microtubule architecture results in most movement toward
the distal end of the cell. (See Blum and Reed [38] and
Reed et al. [39] for a classic mathematical treatment of
the problem.) In our case, over the experimentally observed
timescale and within the regions we observed, there was no
such overall transport bias, making effective diffusivity a
natural first tool for quantifying large-scale transport.

There are numerous tools for estimating effective diffu-
sivity. The most direct and most commonly used method is
to calculate an ensemble-average MSD and use regression to
infer its slope.Thismethodassumes that the paths are diffusive
and the MSD is linear. Our dataset presents two challenges to
this method: first, the paths are a mixture of straight-line seg-
ments, which would be parabolic in theMSD,mixedwith sta-
tionary periods, which would be constant. One expects,
through ergodicity, that with a large enough population and
long enough paths the ensemble average would be essentially
linear, permitting the use of the MSD slope. However, our
paths are relatively short compared with the switch rate
(only a few switches are observed in each path), and the paths
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have highly variable lengths. We observed that this led to
biases and noisiness in MSD curves that prevent an unambig-
uous estimate for the slope.

There are multiple methods for estimating MSD through
studying segment properties. Some of these, for example
Berg’s formula for the ‘‘run-and-tumble’’ motion of E. coli
(50), assume that the speeds of the segments are independent
of the segment durations. As reported in Fig. S8, segment
speeds and durations are highly (anti)correlated in this data-
set. Fortunately, the renewal-reward framework presented in
Hughes et al. (51) and Ciocanel et al. (41) (Eq. 8 in the latter
with effective velocity set to zero) permits a simple and intu-
itive formula for estimating effective diffusivity (defined in
the sense of Mogilner et al. [52]) with the speed-duration
relationship in mind. To this end, let

Deff ¼ CðDXÞ2D
4CDTD

; (17)

where the numerator is the ensemble-average squared
displacement of the segments and the denominator is twice
the average time of a segment. The results are reported for
each study group in Table 3, and we note that although
the MSD-slope technique was noisy, those estimates did
agree in order of magnitude with values given by Eq. 18.
CONCLUSIONS

We have introduced a series of methods for studying the
transport of lysosomes in live cells. After applying a stan-
dard changepoint algorithm, we studied the resulting trajec-
tory segments to determine the impact of intracellular region
and lysosome diameter on transport speeds, as well as the
proportion of time lysosomes spent motile, defined as an
average speed of more than 100 nm/s in segments, inferred
by our segmentation method. This protocol is broadly appli-
cable to any transport in which a particle switches between
motile and stationary phases. What we present is particu-
larly useful when the speed distribution is not multimodal.
Moreover, in contrast to MSD-based methods, which rely
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on averaging over all states, and often over all particles, our
approach allows a more refined understanding of changes in
distinct behaviors.

Using this analysis, we found that the location of the lyso-
some in the cell is an important factor in lysosomal transport.
Although the speed distribution during motile segments is
not affected, the proportion of time spent in the motile state
is significantly decreased in the perinuclear region. This is
due almost entirely to a 100% increase in the duration of
stationary periods. This decreased transport in the perinu-
clear region could point toward cytoskeletal differences in
the perinuclear region, a lysosomal maturation process, or
the importance of the endoplasmic reticulum as a tethering
site for lysosomes (5,53,54). These possibilities will be
examined in future work. Our previous work (11), as well
as many single-particle tracking studies, did not consider
intracellular region as a factor in intracellular transport,
instead focusing lysosome diameter. The more detailed
mathematical analysis described above shows that the
diameter of the lysosome does have some impact on speed
in the motile segments of the trajectories. But by one
measure, effective diffusivity, the impact on transport due
to size is smaller than the impact due to region. Although
our present work does not examine the underlying mecha-
nism that leads to this regional dependence on intracellular
transport, it does point toward including intracellular region
as a factor in future studies of intracellular transport for
lysosomes, as well as other organelles and large molecules.
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APPENDIX

Derivation: posterior distributions for state-
switching model parameters

To minimize bias in the Bayesian estimation of the state-switching model,

we used scale-invariant Jeffreys priors (44). These have the form

plðlÞ ¼ 1

l
;pmðmÞ ¼ 1

m
;

ppðpÞ ¼ p�1ð1� pÞ�1;pqðqÞ ¼ q�1ð1� qÞ�1
:

(18)

For the likelihood function, before giving the full form, we present an

example. Ignoring velocities, suppose that a piecewise-linear path estimateb4 consists of the following sequence of (state, duration) pairs:b4 ¼ fðS; s1Þ; ðM; t2Þ; ðM; t3Þ; ðS; s4Þ; ðM; t5Þg: (19)

The first segment is stationary and lasts for time s1, which has likelihood

le�ls1 . It then transitions from stationary to motile, an event that has prob-

ability p, and then the likelihood of that motile state lasting for time t2 is

me�mt2 . These considerations continue until the final state. Note that there

is not a transition at the end of the path; the observation stops while the
particle is still in a motile state. The likelihood that this occurs is the

probability that the state is longer than the time t5 (in other words, the prob-

ability that there is no transition in this amount of time). This ‘‘survival’’

probability for the exponential is
RN
t5

me�mtdt ¼ e�mt5 . The likelihood for

the path given in (19) can therefore be written

Lðq ; b4Þ ¼ �
le�ls1

� ðpÞ ðme�mt2Þð1� qÞðme�mt3Þ
� ðqÞ�le�ls4

�ðpÞðe�mt5Þ: (20)

When taking a population of trajectories, which are assumed to be inde-

pendent, the likelihood given the whole population is a product of the likeli-

hoods given the individual paths. With this product structure, there is a

significant simplification that follows. Let bF be the collection of all piece-

wise-linear approximations of lysosome paths; then

Lðq ; bFÞ ¼ lnSe�lsmnMe�mtpnSM ð1� pÞnSSqnMSð1� qÞnMM ;

(21)

where nS and nM are the number of stationary or motile segments that are

completed during an observation period; t and s are the total time in the

motile state and stationary state, respectively; and nMM , nMS, nSS, nSM are

the numbers of observed transitions of each type.

The posterior distribution can then be written

pðq j bFÞ c¼ lnS�1e�lsmnM�1e�mt

� pnSM�1ð1� pÞnSS�1
qnMS�1ð1� qÞnMM�1

:
(22)

By inspection we recognize that the posterior distributions are indepen-

dent and have the gamma and beta distributions displayed in Henry

et al. (10).
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Comparison of analysis using trajectories obtained from raw or despeckled
images

Figure S1: Comparison of analysis using trajectories obtained from raw or despeckled
images. A. Fluorescence microscopy image of a BS-C-1 cell overlaid with lysosome tra-
jectories obtained using TrackMate in the absence of a filter. B. Same cell with trajectories
obtained following despeckling. C. A comparison of percent motile trajectories obtained
from raw or despeckled images (n=600 lysosomes from 6 cells) shows no significant dif-
ference (ns, overlapping confidence intervals).

Figure S2 shows snapshots of the trajectory displayed in Fig. 1 and analysis of lo-
calization uncertainty. Localization uncertainty of tracking was determined by tracking
(TrackMate) fluorescent polystyrene beads (200 nm, #F8764, ThermoFisher Scientific) or
emGFP-labeled lysosomes (as described in Experimental Methods) with controlled mo-
tion of the microscope stage (H117P2IX, Prior Scientific, Rockland, MA) used to provide
a known position. This method was adapted from D. Nong, et al., Biomedical Optics
Express, 12, 3253, 2021. The fluorescent beads, adhered on a glass coverslip, provide the
uncertainty inherent to the microscope and analysis method. The emGFP-labeled lyso-
somes in BS-C-1 cells, identical to our experimental system, report on the uncertainty due
to motion in the cellular environment. In both systems, the plateaus of the displacement
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curves were determined using 1.5 s intervals (30 frames), confirmed to be statistically in-
distinguishable from zero slope through individual linear regressions. The values of each
of these intervals were scaled to center around 0 using the best fit y-intercept as an off-
set. These zero-adjusted plateau intervals were combined and analyzed through a linear
regression. The localization uncertainty was then calculated from the standard deviation
of the y-intercept of that final fit. For the immobilized fluorescent beads, the localiza-
tion uncertainty was 6.3 nm. For the live cell emGFP-labeled lysosomes, the localization
uncertainty was 63.5 nm.

Figure S2: A. Snapshots of the trajectory shown in Fig. 1. The scale bar is 1 µm. B.
To measure localization uncertainty, fluorescent beads (200 nm) were immobilized on an
optical dish by evaporation. The position of the beads was controlled by the microscope
stage. C. Plot of displacement from origin for the resulting trajectories (n = 7). The red
curve is the centerline of all seven trajectory displacements and the black dots are indi-
vidual subpixel localization coordinates obtained from TrackMate. D and E. An identical
approach was used for emGFP-labeled lysosomes, as described in Experimental Methods
(n = 5).
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Further examples of segmented trajectories

Figure S3: Trajectory from a BS-C-1 cell. Many of the trajectories feature short-lived Motile
segments and long, sustained periods without much movement. In these “stationary” phases,
there appear two types of fluctuations: rapid fluctuations about an “anchor” and slow “wobbles”
where the anchor itself seems to move.

Figure S4: Trajectory from a BS-C-1 sucrose-treated cell. There can be consecutive motile seg-
ments with similar speeds (i.e. Segments 3 and 4) because of a change in direction.
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Figure S5: Trajectory from a BS-C-1 cell. This trajectory features two consecutive stationary
segments. This a good example of how some stationary states seem to have a slow, but well-
defined, direction. The second segment is an example of a stationary segment that would qualify
as motile if the threshold was reduced to 50 nm/s.

Figure S6: Trajectory from a BS-C-1 sucrose-treated cell. We include this path for two reasons.
First, the final stationary segment exemplifies the tendency of lysosomes to have some slight
steady drift, not due to the microscope, during what we label “stationary” states. Second, the
initial stationary segment appears to have a higher variability in the y-coordinate than in the x-
coordinate. This appears to be some kind of tracking effect. Despite the increased variation, the
algorithm identifies this as a stationary state and ignores the spurious tracker-induced feature.
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Figure S7: BS-C-1 cells. Scatter plot of the speed before and after each state switch in each
trajectory. The x-axis represents the speed of the segment before a switch and the y-axis represents
the speed of the segment after the switch.

Discussion concerning the choice of the Motile/Stationary speed threshold.

In order to set a threshold between motile and stationary segments, we pooled all esti-
mated speeds from each comparison group and created a scatter plot with the segment
durations (Fig. S8). While there are many short segments (10 seconds or less) with speeds
of 100 nm/s and higher, there are very few long segments that attain such a speed.

To understand the distribution of inferred speeds better, we developed two null mod-
els for stationary periods. In the first, we used the model articulated in the Mathematical
Models section, restated here for convenience. Let {(xi, yi)}n

i=1 be a sequence of lysosome
positions that can be observed at times {ti}n

i=1. In the first model, we assume that the
anchor positions proceed deterministically with a fixed velocity (u, v), starting from po-
sition (a, b) at time 0. Assuming that the cargo fluctuates about the anchor position with
magnitude β, we have for i ∈ {1, . . . , n}

xi = ai + βεx
i ,

ai = uti + a,

yi = bi + βε
y
i ,

bi = vti + b,

(S1)

where {(εx
i , ε

y
i )}n

i=1 is a sequence of 2d iid standard normal random variables. A “station-

5



Figure S8: Visualization of the apparent inverse relationship between segment duration
and speed. Each point corresponds to the duration and inferred speed during a segment
of lysosomal trajectories from the indicated groups. Using a threshold of 100 nm/s, the
segments were labeled Motile or Stationary and colored green or red accordingly.

ary” state would correspond the choice (u, v) = (0, 0).
As we observe in the main text, there are constant fluctuations in the data, even in

the paths with the least amount of movement. See, for example, the “stationary” first
segment in the path displayed in Figure S5. The fluctuations are not consistent among
multiple paths. There are multiple possible sources of this movement. For example, the
lysosome may be detached from a microtubule and diffusing in a crowded environment.
It might instead be attached to multiple motors engaged in a tug-of-war, or to a single
motor that is not stepping, and the attached microtubule may be moving. In any case,
we can model this as a second source of noise, which in this case appears in the anchor
position. In contrast to the anchor-reverting noise term in the motor equations, this noise
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A B

Null stationary model without anchor diffusion Null stationary model with anchor diffusion

Segment inferred stationary
Segment inferred motile

Figure S9: A visualization of the relationship between segment duration and estimated speed
when there is no underlying motor stepping. A. Result of 10,000 simulations of the model dis-
played in Equations S1. B. Result of 10,000 simulations of model displayed in Equations S2. Very
few segments are inferred to have a speed of greater than 100 nm/s.

accumulates. When (u, v) = (0, 0), the anchor is then a Brownian motion. We have for
i ∈ {1, . . . , n}

xi = ai + βεx
i ,

ai = ai−1 + u(ti − ti−1) + ρζx
i ,

yi = bi + βε
y
i ,

bi = bi−1 + v(ti − ti−1) + ρζ
y
i ,

(S2)

where we employ the convention that t0 = 0, (a0, b0) = (a, b), ρ is a small positive
constant, and {(ζx

i , ζ
y
i )}n

i=1 is a sequence of 2d iid standard normal random variables.
We ran 10,000 simulations of each stationary null model with the velocity (u, v) set to

(0, 0) and with the magnitude of the fluctuations about the anchor to be β = 0.1. This
value was inferred from a subset of the “most clearly stationary” paths in the lysosome
data. (To be specific, we looked at the overall variance of all paths and looked studied the
subset with the smallest values.) For the anchor diffusion coefficient we chose ρ = 0 for
the first trial group and ρ = 0.001 for the second trial group. The segment durations were
drawn uniformly at random from the interval [0, 30] seconds. We display the results of
the numerical experiment in Figure S9. If we use the anchor-with-diffusion model as our
null model, then we can say that for any segment with estimated speed of greater than
100 nm/s, we can reject the null hypothesis with a p-value of less than 0.001.
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Comparison for different Motile/Stationary thresholds

Proportion of time spent motile
Group 50 nm/s 100 nm/s 200 nm/s

BS-C-1 Control
21.2% 13.0% 7.6%

periphery
BS-C-1 Control

10.2% 5.9% 2.9%
perinuclear

BS-C-1 Sucrose
22.5% 12.9% 7.1%

periphery
BS-C-1 Sucrose

14.1% 6.4% 3.5%
perinuclear

A549
15.2% 8.5% 4.5%

periphery
A549

5.6% 3.4% 1.6%
perinuclear

Table S1: Comparison between different Motile/Stationary thresholds. To confirm that
our threshold value of 100 nm/s was not affecting our results, we re-ran the analysis
using 50 nm/s and 200 nm/s as the threshold values. As expected, the estimates for
proportion of time spent motile changed, but the ratio of difference between the periphery
and perinuclear regions remained largely the same.
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Estimates for the parameters of the state-switching model

In the main text, we included the predictive intervals for state-switching model outcomes
like proportion of time spent motile and average duration of motile and stationary peri-
ods. Those UQ intervals were constructed using the posterior distribution for the param-
eters µ, λ, q, and p. In Table S2 we provide point estimates and 95% credible regions for
each of these parameters based on the trajectories within each displayed group.

BS-C-1 µ : Motile λ : Stationary q : M→ S p : S→ M
Groups Switch Rate Switch Rate Switch Prob. Switch Prob.

Control cells .564 s−1 .015 s−1 .392 .941
perinuclear (.480, .654) (.012, .018) (.323, .466) (.880, .981)

Control cells .548 s−1 .030 s−1 .335 .913
periphery (.517, .582) (.027, .033) (.308, .362) (.884, .938)

Sucrose-treated cells .569 s−1 .031 s−1 .320 .931
periphery, small lysosomes (.534, .606) (.028, .034) (.292, .351) (.901, .957)

Sucrose-treated cells .545 s−1 .033 s−1 .394 .860
periphery, large lysosomes (.503, .592) (.029, .037) (.355, .436) (.814, .899)

Sucrose-treated cells .555 s−1 .018s−1 .402 .856
perinuclear (.492, .619) (.015, .021) (.345, .463) (.791, .912)

Sucrose-treated cells .572 s−1 .033 s−1 .350 .900
periphery (.543, .602) (.030, .035) (.325, .375) (.873, .922)

Table S2: Point estimates and 95% credible regions for the parameters of the state-
switching model described in the main text (BS-C-1 cells). The bolded interval marks
a parameter that is significantly different than comparison groups. The top two sections
are the study groups included in the main text (comparison by region in control cells
and comparison by size in the periphery of sucrose-treated cells). The bottom group is
a comparison by region in the sucrose-treated cells to show robustness of the by-region
results.
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Results from other comparison groups

To ensure that the observed differences in perinuclear and peripheral transport of lyso-
somes were not unique to the monkey kidney cells (BS-C-1) described in the main text,
experiments and analysis were repeated with human lung cells (A549). Also, in the main
text we provided a comparison of small and large lysosomes in the periphery of sucrose-
treated BS-C-1 cells. Here we include results for the regional comparison (perinuclear
vs. periphery) in sucrose-treated BS-C-1 cells. Results described below are in agreement
with results presented in the main text.

A549 n Motile prop. Motile prop. Avg. Stationary Avg. Motile
Groups M, S (Direct est.) (Model) period (Model) period (Model)

A549 cells
57, 202 .028 ± .014

.034 141.7 s 5.07 s
perinuclear (.020, .061) (96.5, 205.4) (3.30, 7.79)
A549 cells

584, 625 .092± .018
.085 62.2 s 5.7 s

periphery (.069, .103) (53.6, 72.95) (4.95, 6.64)

Table S3: Regional comparison for A549 cells. The “direct estimate (Direct est.)” was
computed by calculating the proportion of time spent motile on a path-by-path basis
and averaging over all paths. The “model estimates (Model)” were derived using our
state-switching model, which is described in the main text, “Parameter estimation for
state-switching model”. Uncertainty for these quantities is expressed in terms of Bayesian
95% credible regions in parentheses below each estimate. We consider a difference to be
significant if the credible regions associated with the two samples do not overlap. Bolded
values are significantly different from comparison groups.

A549 µ : Motile λ : Stationary q : M→ S p : S→ M
Groups Switch Rate Switch Rate Switch Prob. Switch Prob.

A549 cells .424 s−1 .009s−1 .488 .821
perinuclear (.311, .553) (.006, .012) (.345, .631) (.674, .926)
A549 cells .523 s−1 .018 s−1 .337 .916
periphery (.479, .569) (.015, .020) (.297, .375) (.870, .951)

Table S4: Model parameter estimates for lysosome trajectories in human lung cells (A549).
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BS-C-1 n Motile prop. Motile prop. Avg. Stationary Avg. Motile
Groups M, S (Direct est.) (Model) period (Model) period (Model)

Sucrose-treated
57, 672 .068 ± .018

.064 65.91 s 4.53 s
perinuclear (.050, .082) (54.27, 79.62) (3.76, 5.42)

Sucrose-treated
584, 2397 .129± .015

.129 33.98 s 5.01 s
periphery (.116, .143) (31.32, 36.94) (4.61, 5.46)

Table S5: Regional analysis of sucrose-treated BS-C-1 cells.

A549 Group Average Motile Speed Effective Diffusivity

A549 cells
399 nm

s ; (332, 501) 8.81× 10−4 µm2

sperinuclear region
A549 cells

498 nm
s ; (467, 534) 3.48× 10−3 µm2

speripheral region

Table S6: Average motile speeds from A549 cells with 95% BCa bootstrap confidence
intervals in parentheses. We pooled all inferred speeds from segments labeled as motile
(100 nm/s or greater). These are the estimates for average speed in each of the groups
with associated BCa bootstrap confidence intervals. In the last column we report the
estimated effective diffusivity for each group.

BS-C-1 Group Average Motile Speed Effective Diffusivity

Sucrose-treated cells
459 nm/s; (424, 503) .00196 µm2

sperinuclear region
Sucrose-treated cells

455 nm/s; (439, 474) .00374 µm2

speripheral region

Table S7: Average motile speeds of sucrose-treated BS-C-1 cells.
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Figure S10: Scatter plots of the inferred segment speeds that are summarized in Fig. 4 in the main
text. The data points are vertically positioned to display multiple data points with similar speed
values. The comparison on the left (A and B) shows the value of using the ecdf to test differences.
While there are fewer large values (say, greater than 1 µm/s) in the perinuclear group of the
BS-C-1 control cells, the blue confidence band in Fig. 4 shows that it would not be unusual for a
subsample of the periphery group to look like the perinuclear group. By contrast, the difference
between the groups on the right (C and D) are significantly different.
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Figure S11: Visualizations of the differences among motile speed distributions for different group
comparisons in A549 cells. A. Empirical kernel density estimations for the inferred speeds. B.
Associated empirical cumulative distribution functions (ecdfs) for these populations (solid curves)
and the ecdfs for bootstrapped subsamples of the larger sample (light blue curves). The subsample
ecdfs create a shaded region (light blue) that shows the range of variability that arises purely due
to subsampling. The means of these speed distributions are displayed as vertical dashed lines. C.
and D. Corresponding scatter plots of the motile speeds overlaying its associated box-and-whisker
plot.
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Figure S12: Visualizations of the differences among motile speed distributions for dif-
ferent group comparisons in sucrose-treated BS-C-1 cells. A. Empirical kernel density
estimations for the inferred speeds of the indicated groups. B. Associated empirical cu-
mulative distribution functions (ecdfs) for these populations (solid curves) and the ecdfs
for bootstrapped subsamples of the larger sample (light blue curves). The subsample
ecdfs create a shaded region (light blue) that shows the range of variability that arises
purely due to subsampling. The means of these speed distributions are displayed as ver-
tical dashed lines. C. and D. Corresponding scatter plots of the motile speeds overlaying
its associated box-and-whisker plot.
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